A new class of generalized Laguerre-based poly-Bernoulli polynomials
نویسندگان
چکیده
A new class of generalized Laguerre-based poly-Bernoulli polynomials are discussed with an attempt to generate new and interesting identities, some are in relation with Stirling number of the second kind. Different analytical means and generating function method is incorporated to derive implicit summation formulae and symmetry identities for generalized Laguerre poly-Bernoulli polynomials. It is worthy to mention that these results are extension to a number of formally proved identities of generalized Laguerre-based Appell polynomials [8] and generalized poly-Bernoulli polynomials [4, 5]. AMS subject classification: 11B73, 11A07, 33C45.
منابع مشابه
An extension of generalized Apostol-Euler polynomials
Recently, Tremblay, Gaboury and Fugère introduced a class of the generalized Bernoulli polynomials (see Tremblay in Appl. Math. Let. 24:1888-1893, 2011). In this paper, we introduce and investigate an extension of the generalized Apostol-Euler polynomials. We state some properties for these polynomials and obtain some relationships between the polynomials and Apostol-Bernoulli polynomials, Stir...
متن کاملThe Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملNumerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملA new class of generalized Bernoulli polynomials and Euler polynomials
The main purpose of this paper is to introduce and investigate a new class of generalized Bernoulli polynomials and Euler polynomials based on the q-integers. The q-analogues of well-known formulas are derived. The q-analogue of the Srivastava–Pintér addition theorem is obtained. We give new identities involving q-Bernstein polynomials.
متن کاملOn composition of generating functions
In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...
متن کامل